String cavitation formation inside fuel injectors
نویسندگان
چکیده
The formation of vortex or ‘string’ cavitation has been visualised at pressures up to 2000 bar in an automotive-sized optical diesel fuel injector nozzle. The multi-hole nozzle geometry studied allowed observation of the hole-to-hole vortex interaction and, in particular, that of a bridging vortex in the sac region between the holes. Above a threshold Reynolds number, their formation and appearance during a 2 ms injection event was repeatable and independent of upstream pressure and cavitation number. In addition, two different hole layouts and threedimensional flow simulations have been employed to describe how, the relative positions of adjacent holes influenced the formation and hole-to-hole interaction of the observed string cavitation vortices, with good agreement between the experimental and simulation results being achieved.
منابع مشابه
Pro O F Co Py [ G Tp - 08 - 1324 ] 002001 G Tp
Cavitation and turbulence inside a diesel injector play a critical role in primary spray breakup and development processes. The study of cavitation in realistic injectors is challenging, both theoretically and experimentally, since the associated two-phase flow field is turbulent and highly complex, characterized by large pressure gradients and small orifice geometries. We report herein a compu...
متن کاملCity Research Online Evaluation of friction heating in cavitating high pressure Diesel injector nozzles
Variation of fuel properties occurring during extreme fuel pressurisation in Diesel fuel injectors relative to those under atmospheric pressure and room temperature conditions may affect significantly fuel delivery, fuel injection temperature, injector durability and thus engine performance. Indicative results of flow simulations during the full injection event of a Diesel injector are presente...
متن کاملNovel design for transparent high-pressure fuel injector nozzles.
The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated ...
متن کاملCFD Study of Needle Motion Influence on the Spray Conditions of Single-Hole Injectors
This work consists of studying the effect of needle motion of typical single-hole injectors on spray characteristics. Three-dimensional moving mesh simulations have been carried out to calculate the injection process of cylindrical and conical geometries. The CFD analysis includes a numerical model which simulates the effect of cavitation. Results show that the flow within the nozzle and at the...
متن کاملNumerical Simulation of Cavitating Flows in Diesel Injectors by a Homogeneous Equilibrium Modeling Approach
Due to excessive stress in the orifice, cavitation occurs in high-pressure Diesel injectors. As experiments are very hard to manage for injection conditions (small-scaled, high-speed flow), a numerical model seems to be the right tool to get a better understanding of the flow features inside and at the exit of the injector nozzle. The purpose of this paper is to present a simulation code based ...
متن کامل